
 Bilkent University

Senior Design Project
Coda

Low Level Design Report

Merve Kılıçarslan, Yağız Efe Mertol, Ege Özcan, Çağla Sözen, Murat Tüver

Supervisor: Prof. Dr. Uğur Güdükbay
Jury Members: Prof. Dr. Halil Altay Güvenir, Prof. Dr. Fazlı Can

Innovation Expert: Prof. Dr. Veysi İşler (SimSoft)

Low Level Design Report
December 30, 2019

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the
requirements of the Senior Design Project course CS491.

Contents

Introduction 2
1.1 Object Design Trade-Offs 3

1.1.1 Functionality vs. Usability 3
1.1.2 Use Time vs. Usability 3
1.1.3 Cost vs. Performance 3
1.1.4 Extendibility vs. Mobility 3
1.1.5 Compatibility vs. Extendibility 3

1.2 Interface documentation guidelines 4
1.3 Engineering standards 4

Packages 5
2.1. Updated Package Diagram 5
2.2.Play Layer 6
2.3. Sound Layer 7
2.4. Storage Layer 8
2.5. Instrument Layer 9
2.6. Song Layer 10
2.7. Hand Gesture Layer 11
2.8. CameraControl Layer 11
2.9. CardboardView Layer 12

Class Interfaces 13
3.1.Play Layer 13
3.2. Sound Layer 16
3.3. Storage Layer 16
3.4. Instrument Layer 17
3.5. Song Layer 18
3.6. HandGesture Layer 20
3.7. CameraControl Layer 21
3.8. CardboardView Layer 22

Glossary 22

References 23

Project High Level Design

Coda

1 Introduction

Music as a form of art has been the common interest of people used to express

feelings and identity through a composition of rhythm, timbre and melody. In different forms

and sounds by making use of the variety of instruments, music is present in almost every

context for numerous purposes. Besides the pleasure of listening, it’s been proven that

playing instruments have positive effects on brain development, especially for spotting

statistical patterns enabling the learner to better predict what would happen next in a pattern,

so every child has the right to better themselves with the help of instruments insomuch as

discovering their musical talents [1].

Over the last 20 years, the number of children learning to play an instrument or

playing an instrument has increased significantly [2]. However 26% of children and 49% of

adults in the UK stated that they’ve given up playing instruments although they’ve learned to

play or started to [2]. Most common reasons for this are loss of interest, instrument cost,

lesson costs and competing pressures from school [2]. Furthermore, the fact that some

instruments are highly immobile by nature makes practicing very challenging for both

individuals and for groups of people who practice together. In most cases, instruments

become idle and forgotten because of the impracticalities mentioned. As a result, buying

instruments may be seen as an unnecessary expense. When the cost of learning instruments

and the instruments itself is taken into consideration in addition to immobility, it can be stated

that instruments can be made further accessible.

Therefore, there is need for solutions to make playing and learning instruments more

sustainable by making them more accessible in several aspects like cost and mobility and we

believe that with the increasing number of smartphones, mobile phones can be used to

address this problem.

This report explains the details of the proposed Low-Level System Design including

Object Design Trade-Offs, Interface Documentation Guidelines, Engineering Standards,

Packages, Class Interfaces with the help of UML for proper documentation of the system and

clarity of the system design. We aim to come up with a System Design that complies

completely our requirements as explained in the Analysis Report to construct a system that

fulfills the need of our users while providing a usable and efficient application.

1.1 Object Design Trade-Offs

1.1.1 Functionality vs. Usability
Usability is essential for Coda since the fundamental idea of Coda is to mimic the

experience of playing an instrument intuitively. The success of the system is determined by
the ability to mimic such real-life, tangible experience. To be able to allow the user to interact
with the instruments as intuitively as possible, some functionalities will be left out.
Nevertheless, all the provided functionalities will be easy to use. Hence, usability is favored
over functionality during design.

1.1.2 Use Time vs. Usability

As discussed in Section 1.1.1 usability is an essential for Coda for intuitive
interactions with the instrument. To be able to allow the user to interact with the instruments
as intuitively as possible Coda creates an immersive virtual environment, as a result use time
of Coda is limited to avoid loss of the notion of spatial awareness. Hence, usability is favored
over use time during design.

1.1.3 Cost vs. Performance

As discussed in the previous documents, one of the distinguishing features of Coda is
not requiring any advanced or additional hardware such as controllers or advanced VR
glasses. This is for serving one of the primary missions of Coda which is to ease access to
instruments in terms of cost and to be accessible to all financial levels. Therefore, although
using additional hardware or camera would increase performance, no additional hardware is
required in the design other than the smartphone itself and a simple VR cardboard. Hence,
cost is favored over performance during design.

1.1.4 Extendibility vs. Mobility

To serve one of the primary missions of Coda which is to ease access to instruments
in terms of mobility, mobility is an important aspect of the system design. Although Coda
could have been more extendible in terms of addition of different instruments, instruments
which require a different FOV than the one provided by the VR cardboard and the
smartphone are left out since such an instrument would require the use of an external camera
such as guitar, violin and so forth. Hence, mobility is favored over extendibility during design.

1.1.5 Compatibility vs. Extendibility

Although compatibility of Coda with multiple operating systems is important for
increasing ease of access, considering the variety of phones with Android as the operating
systems is significantly higher than other operating systems we consider Android to be a
sufficient platform. Furthermore, extendibility of the system is important for providing multiple
instruments and providing updates for solving bugs and increasing performance since
performance and usability is of important aspects of Coda. Additionally, Coda uses novel
state-of-art CV techniques and API’s which were developed very recently, so it is important to
keep the system extendible with updates that will enhance Coda. Hence, extendibility is
favored over compatibility during design.

3

1.2 Interface documentation guidelines

In the documentation of Coda, classes are explained in detail with their names,
properties and methods. For each class, there exists a ClassName indicating the name of the
class, a list of attributes and a list of methods. All attributes of the class are indicated along
with their access modifiers, types and names. Similarly, all methods of the class are indicated
along with their access modifiers, types,names and a list of parameters.

An outline of the class descriptions in this document is given below:

class ClassName

Class Description

Attributes

Access Modifiers Type Attribute Name

Methods

Access Modifiers Return Type Method Name Parameters

methodName: Method description.

Table 1: Class Description Outline

1.3 Engineering standards

All documentation of Coda including the class interfaces, diagrams, scenarios, use
cases, subsystem decompositions and hardware descriptions follows the UML guidelines [3].
All citations in the documentation including this report follows the IEEE citation format [4].
These formats are preferred for standardization and for the readability of the documentation.

4

2 Packages

2.1. Updated Package Diagram

Subsystem Decomposition of Coda is updated as follows according to design changes.

Figure 1: Subsystem Decomposition Coda

Coda’s architecture is limited to the smartphone itself. All sublayers are within the

SmartPhone Layer, which is the most comprehensive layer of the system. In this architecture,

there is no distinction between the client side and the server side since both sides depend on

the local system only. However this architecture may be subject to change if there occurs

issues about the processing power of the smartphone.

Detailed description of packages and classes can be found in the proceeding sections.

5

2.2.Play Layer

Figure 2: Subsystem Decomposition for the Play Layer of Coda

All game operations and user interactions are handled in this layer. This layer will handle the

interactions of the user with menus, initialization of the game, representation of the hands as

an object and interaction with the game objects.

Game: A model class for the game itself. Song and level chosen by the user is stored in this

class as well as the current score of the user.

GameManager: A controller class for the Game model. Instantiates the Game and performs

all other Game related operations like pausing, updating and playing a note by

communicating with the relevant layers (i.e. HandGesture Layer).

MenuManager: A controller class for the Menu in the application. Handles menu interactions

as changing screens and clicking menu buttons according to the button clicked.

HandModel: A model class for representing and rendering the hands of the user according to

the data received from the HandGesture Layer. Hands are represented with a list of maximum

21 3-dimensional coordinates for Hand Landmarks as received from MediaPipe. This model

6

also stores which hand is the model representing (i.e. Left or Right), and number of Hand

Landmarks currently received for the hand.

HandManager: A manager class for the Hand model. Instantiates the hands of the user as

two Hand objects one being right and the other being left. Contains the relevant methods for

getting and setting the data in the Hand Model.

HandCollisionManager: A manager class for detecting collisions between either of the

hands of the user and the instrument in the game, and then managing the interactions with

the relevant classes responsible from the auditory and visual feedback.

2.3. Sound Layer

Figure 3: Subsystem Decomposition for the Sound Layer of Coda

All sound operations are handled in this layer. This layer will handle the playing of the songs,

auditory feedback given by the application to the user depending on the instrument played

and the speed of the interaction. This layer also handles the sound settings in the application.

SoundManager: A controller class for the sound operations in the application. This class

handles the sound settings like setting the volume of the auditory feedback and muting all

sounds. This class also controls the instrument piece and hit speed dependant sounds

according to user interactions. Finally, recorded and library pieces are played in this class.

7

2.4. Storage Layer

Figure 4: Subsystem Decomposition for the Storage Layer of Coda

All storage operations are handled in this layer. This layer will handle the saving of recorded

songs, loading saved and library songs. This layer also handles the loading the sounds

defined for each instrument part.

FileManager: A controller class for the storage operations in the application. This class

handles the operations regarding the file system of the smartphone. Using this class,

recorded songs are saved to a path, saved and library songs are loaded from a path. Sounds

defined for each instrument part which are again stored in the file system are accessed using

this class.

8

2.5. Instrument Layer

Figure 5: Subsystem Decomposition for the Instrument Layer of Coda

This layer represents the Instruments in Coda. It contains the Instrument class which is

composed of the Part class. This layer contains the instrument structures definitions and the

parts that the instruments are composed of, providing the relevant functionalities depending

on the instrument structure.

Instrument: A model class for the general instrument structure in Coda.Id and name of the

instruments are commonly contained in this structure. Each instrument is composed of Parts

that provide instrument specific functionalities.

Part: A model class for constructing instruments by parts in Coda. Each Part of an Instrument

has a unique functionality. These unique functionalities are contained as structures in this

class. This class contains the name, instrumentId, path to the sound in the file system, sound

as audio and 3-dimensional coordinates of the Part.

9

2.6. Song Layer

Figure 6: Subsystem Decomposition for the Song Layer of Coda

This layer represents all types of Songs in Coda. It contains the Piece class which is used for

representing both library Songs and Recordings. This layer consists solely of the models

which will be discussed below.

Piece: A model class for the general Piece structure in Coda. Attributes that are common to

all pieces in Coda, either recorded by the user or in the library by default, are contained in this

class. All Pieces have a filepath in which they are stored, a noteSequence represented as a

list of Note objects which are crucial for the functionalities of Instruments.

Song: A model class for the library Songs that are stored by default in Coda. In addition to

the noteSequence that depends on the Instrument played, this class contains sounds of the

other instruments in the Song.

Recording: A model class for the Recordings made by the user. Recordings are stored as a

sequence of Notes played by the user during the game.

Note: A model class for the Notes for constructing all Pieces in Coda. Each Note has a

duration that defines how long this note will play and an instrumentPart that defines which

part of the instrument makes the sound of this Note.

10

2.7. Hand Gesture Layer

Figure 7: Subsystem Decomposition for the HandGesture Layer of Coda

This layer is responsible from tracking the hand gestures of the user using the MediaPipe

library and detecting these gestures. Also, coordinates of the hands are received from this

later and mapped to the coordinates of Unity accordingly.

HandGestureManager: A controller class for interacting with the MediaPipe library to get the

location of the hands continuously for detecting hits on the instrument and stimulating the

relevant layers that handle hits on Parts.

MediapipeToUnityCoordinateMapper: A mapper class for mapping the hand coordinates

received from the camera to the coordinates of Unity according to the relative coordinate of

the camera object in Unity. MediaPipe returns coordinates as a native structure LandMark,

this class converts these coordinates to a Vector3 representation to map to Unity in a correct

way.

2.8. CameraControl Layer

11

Figure 8: Subsystem Decomposition for the CameraControl Layer of Coda

Camera operations are handled in this layer. This layer will handle the invokation of the

camera to get the feed of the camera to be analyzed.

CameraManager: A controller class for the camera operations in the application. This class

invokes the camera to get the camera feed as a WebCamTexture to be analyzed by other

layers which use camera data to arrange interactions (i.e. HandGestureManager).

2.9. CardboardView Layer

Figure 9: Subsystem Decomposition for the CardBoardView Layer of Coda

This layer is responsible from rendering the notes on the screen in addition to the structure

views which are excluded from the diagrams for simplicity and as a result of the simplicity of

objects in Unity.

NoteVisualizer: A class for rendering notes on the instruments. Notes will be visualized for

two different purposes: for guiding the user to play the instrument and for indicating whether

the user hit the correct note or not.

12

3 Class Interfaces

3.1.Play Layer

class GameManager

A controller class for the Game model. Instantiates the Game and performs all other

Game related operations like pausing, updating and playing a note by communicating with

the relevant layers (i.e. HandGesture Layer).

Attributes

private Game currentGame

Methods

public void startGame type: String,
instrumentType:
Instrument,
song: Piece,
level: int,

public void pauseGame none

public void playNote instrument: Part

public void update none

Table 2: GameManager Class Description

startGame(): A method for instantiating the Game with a particular level,game and song.

pauseGame(): A method for pausing the game by opening the in-game menu.

playNote(): A method for playing a note of an instrument part specified .

update(): A method for updating the game for each change.

class HandModel

A model class for representing and rendering the hands of the user according to the data

received from the HandGesture Layer.

Attributes

private List<Vector3> handCoordinates

private boolean isLeft

private int coordSize

Table 3: HandModel Class Description

13

class HandManager

A manager class for the Hand model. Instantiates the hands of the user as two Hand

objects one being right and the other being left.

Attributes

private HandModel leftHand

private HandModel rightHand

Methods

public List<Vector3> getHandCoord none

public boolean isLeftHand none

public boolean getNoOfCoords none

public void setHandCoord coord: List<Vector3>

public void setLeftHand left: boolean

public void setNoOfCoords coordSize: int

Table 4: HandManager Class Description

getHandCoord(): A method for getting the current coordinates of the hands.

isLeftHand(): A method for checking which hand it is.

getNoOfCoords(): A method for getting the number of currently available coordinates.

setHandCoord(): A method for changing the coordinates of the hands.

setLeftHand(): A method for defining the hand as the left hand.

setNoOfCoords(): A method for changing the number of currently available coordinates.

class HandCollisionManager

A manager class for detecting collisions between either of the hands of the user and the

instrument in the game, and then managing the interactions with the relevant classes

responsible from the auditory and visual feedback.

Methods

public Part onCollisionDetected none

Table 5: HandCollisionManager Class Description

14

getHandCoord(): A method for detecting collisions between either of the hands of the user

and the instrument in the game, and then invoking the relevant classes responsible from the

auditory and visual feedback

class Game

A model class for the game itself. Song and level chosen by the user is stored in this class

as well as the current score of the user.

Attributes

private int currentScore

private int level

private Piece song

Table 6: Game Class Description

class MenuManager

A controller class for the Menu in the application. Handles menu interactions as changing

screens and clicking menu buttons according to the button clicked.

Methods

public void goBack none

public void goToScreen id: String

public void buttonClick buttonId: String,
option: int

Table 7: MenuManager Class Description

goBack(): A method for navigating back to the previous screen.

goToScreen(): A method for navigating to the specified screen.

buttonClick(): A method for indicating a specific button and invoking its functionality.

15

3.2. Sound Layer

class SoundManager

A controller class for the sound operations in the application. This class handles the sound

settings, song sounds and auditory feedback from instruments.

Methods

public boolean mute none

public void setVolume val: int

public void playSound note: Part, speed:
double

public void playPiece track: Piece

Table 8: SoundManager Class Description

mute(): A method for muting all sounds in the application.

setVolume(): A method for setting the volume level according to the value specified.

playSound(): A method for playing the sound of the Part specified with the specified speed.
playPiece(): A method for playing a piece from the storage .

3.3. Storage Layer

class FileManager

All storage operations are handled in this layer. This layer will handle the saving of

recorded songs, loading saved and library songs and getting sounds of instrument pieces.

Methods

public boolean saveSong Path: String

public Piece loadSong Path: String

public AudioClip getSound instrument : Part,
Path : String

Table 9: FileManager Class Description

saveSong(): A method for writing a recording into memory.

loadSong(): A method for loading a song from the library or saved recordings .

getSound(): A method for fetching the sound of a particular instrument part from the memory.

16

3.4. Instrument Layer

class Instrument

 A model class for the general instrument structure in Coda.Id and name of the

instruments are commonly contained in this structure.

Attributes

private int id

private String name

Methods

public int getId none

public void setId id:int

public String getName none

public void setName name: String

Table 10: Instrument Class Description

getId(): A method for getting the ID of the instrument.

setId(): A method for changing the ID of the instrument.

getName(): A method for getting the name of the instrument.

setName(): A method for setting the name of the instrument.

class Part

A model class for constructing instruments by parts in Coda. Each Part of an Instrument

has a unique functionality.

Attributes

private AudioClip sound

private int instrumentId

private String name

private String partSoundPath

Methods

public AudioClip getSound none

17

public void setSound sound:AudioClip

public int getInstrumentId none

public void setInstrumentId id: int

public String getName none

public void setName name: String

public String getPartSoundPath none

public void setPartSoundPath partSoundPath:
String

Table 11: Part Class Description

getSound(): A method for getting the sound of the instrument part.

setSound(): A method for changing the sound of the instrument part.

getInstrumentID(): A method for getting the ID of the instrument that the part belongs to.

setInstrumentID(): A method for changing the ID of the instrument that the part belongs to.

getName(): A method for getting the name of the instrument part.

setName(): A method for setting the name of the instrument part.

getPartSoundPath(): A method for getting the filepath of the sound of the instrument part.

setPartSoundPath(): A method for changing the filepath of the sound of the instrument part.

3.5. Song Layer

class Song

A model class for the library Songs that are stored by default in Coda. In addition to the

noteSequence that depends on the Instrument played, this class contains sounds of the

other instruments in the Song.

Attributes

private AudioClip otherSound

Methods

public AudioClip getOtherSound none

public void setOtherSound otherSound:
AudioClip

Table 12: Song Class Description

getOtherSound(): A method for getting the other sounds in the Song.

setOtherSound(): A method for changing the other sounds in the Song.

18

class Piece

A model class for the general Piece structure in Coda. Attributes that are common to all

pieces in Coda, either recorded by the user or in the library by default, are contained in

this class.

Attributes

private String filepath

private List<Node> noteSequence

public String pieceName

Methods

public String getFilePath none

public void setFilePath filepath: String

public List<Node> getNoteSequence none

public void setNoteSequence nodeSequence:
List<Node>

Table 13: Piece Class Description

getFilePath(): A method for getting the filepath of the Piece.

setFilePath(): A method for changing the filepath of the Piece.

getNoteSequence(): A method for getting the note sequence of the Piece.

setNoteSequence(): A method for changing the note sequence of the Piece.

class Recording

A model class for the Recordings made by the user. Recordings are stored as a sequence

of Notes played by the user during the game.

Table 14: Recording Class Description

19

class Note

A model class for the Notes for constructing all Pieces in Coda. Each Note has a duration

that defines how long this note will play and an instrumentPart that defines which part of

the instrument makes the sound of this Note.

Attributes

private double duration

private Part instrumentPart

Methods

public double getDuration none

public void setDuration duration: double

public Part getPart none

public void setPart part: Part

Table 15: Note Class Description

getDuration(): A method for getting the duration of the Note.

setDuration(): A method for changing the duration of the Note.

getPart(): A method for getting the part required of the Note.

setPart(): A method for changing the part required of the Note.

3.6. HandGesture Layer

class HandGestureManager

A controller class for interacting with the MediaPipe library to get the location of the hands

continuously for detecting hits on the instrument and stimulating the relevant layers that

handle hits on Parts.

Methods

public void hitOnLocation coord: Vector3

public List<Vector3> getHandLocation none

Table 16: HandGestureManager Class Description

hitOnLocation(): A method for detecting the hit on a location and invoking the relevant layers

to handle the hit accordingly.

20

getHandLocation(): A method for getting the coordinates of the hand currently from

MediaPipe.

class MediapipeToUnityCoordinateManager

A mapper class for mapping the hand coordinates received from the camera to the

coordinates of Unity according to the relative coordinate of the camera object in Unity.

Methods

public Vector3 translateCoordinate coord:Landmark

public List<NormalizedLand
markList>

getMultiHandLandMa
rk

none

public List<Vector3> translateCoordList coordList:
List<NormalizedLa
ndmarkList>

Table 17: MediapipeToUnityCoordinateManager Class Description

translateCoordinateList(): A method for translating a List of Normalized LandMarks relative

to the camera into 3-dimensional coordinates relative to the camera object in Unity.

translateCoordinate(): A helper method for translating a single of Normalized LandMark

relative to the camera into 3-dimensional coordinates relative to the camera object in Unity.

getMultiHandMark(): A method for getting the coordinates of the hand currently from

MediaPipe as a Normalized HandMark List.

3.7. CameraControl Layer

class CameraManager

A controller class for the camera operations in the application. This class invokes the

camera to get the camera feed as a WebCamTexture to be analyzed by other layers

which use camera data to arrange interactions (i.e. HandGestureManager).

Methods

public WebCamTexture getCameraFeed none

Table 18: CameraManager Class Description

getCameraFeed(): A method for invoking the camera to get the camera feed as a

WebCamTexture.

21

3.8. CardboardView Layer

class NoteVisualizer

A class for rendering notes on the instruments. Notes will be visualized for two different

purposes: for guiding the user to play the instrument and for indicating whether the user hit

the correct note or not.

Methods

public void visualizeNote note: Part, double:
duration

public void visualizeSuccess note: Part

public void visualizeFailure note: Part

Table 19: NoteVisualizer Class Description

visualizeNote(): A method for visualizing a note to guide the user on a specific instrument

part and for a specific duration.

visualizeSuccess(): A method for visualizing a successful interaction by the user on the

relevant part.

visualizeFailure(): A method for visualizing a failed interaction by the user on the relevant

part.

4 Glossary

UI: User Interface

UML: Unified Modelling Language

FOV: Field of View

6DOF: Six Degrees of Freedom

Client: Part of the system that the user interacts with.

Server: Part of the system that handles the access to a centralized resource or service.

VR : Virtual Reality. A computer generated world that is completely virtual in terms of

environment and the objects in it which provides a virtual interactive environment to the user.

Computer Vision: Combining/Using advanced Image Processing, Machine Learning and

Deep Learning techniques to enable computers to see as a human does.

22

5 References
[1] Smith. B, “New study demonstrates link between music and statistical learning,” The

Sydney Morning Herald, 2019. [Online]. Available:

https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-and-statisti

cal-learning-20170514-gw4eec.html. [Accessed: Oct. 10, 2019].

[2] ABRSM, ABRSM:. [Online]. Available:

https://es.abrsm.org/en/making-music/4-the-statistics/. [Accessed: Oct. 10, 2019].

[3] IBM, "UML - Basics," June 2003. [Online]. Available: http://www.ibm.com/developerworks/

rational/library/769.html.

[4] IEEE, "IEEE Citation Reference," September 2009. [Online]. Available: https://m.ieee.org/

documents/ieeecitationref.pdf. [Accessed 9-Feb-2018].

23

https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-and-statistical-learning-20170514-gw4eec.htm
https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-and-statistical-learning-20170514-gw4eec.htm
https://es.abrsm.org/en/making-music/4-the-statistics/

