
 Bilkent University

Senior Design Project
Coda

High Level Design Report

Merve Kılıçarslan, Yağız Efe Mertol, Ege Özcan, Çağla Sözen, Murat Tüver

Supervisor: Prof. Dr. Uğur Güdükbay
Jury Members: Prof. Dr. Halil Altay Güvenir, Prof. Dr. Fazlı Can

Innovation Expert: Prof. Dr. Veysi İşler (SimSoft)

High Level Design Report
December 30, 2019

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the
requirements of the Senior Design Project course CS491.

Contents

Introduction 3
1.1 Purpose of the System 3
1.2 Design Goals 4

1.2.1 Usability 4
1.2.2 Performance 4
1.2.3 Extendibility 5
1.2.4 Security 5

1.3 Definitions, acronyms, and abbreviations 5
1.4 Overview 6

Current software architecture 7

Proposed software architecture 8
3.1 Overview 8
3.2 Subsystem decomposition 8
3.3 Hardware/software mapping 9
3.4 Persistent data management 10
3.5 Access control and security 11
3.6 Global software control 12
3.7 Boundary conditions 12

3.7.1 Application setup 12
3.7.2 Session Initialization & Calibration 13
3.7.3 Recalibration 13
3.7.4 Termination 13

3.7.4.1 Application Termination 13
3.7.4.2 Session Termination 13

3.7.5 I/O Exceptions 13
3.7.6 Critical Errors 14

Subsystem Services 14
4.1 GamePlay Layer 14

4.1.1 Song Layer 15
4.1.1.1 Piece Class 15
4.1.1.2 Song Class 15
4.1.1.3 Recording Class 15

4.1.2 Instrument Layer 16
4.1.2.1 Instrument Class 16
4.1.2.2 Drum Class 16
4.1.2.3 Part Class 16

4.1.3 Play Layer 17
4.1.3.1 GameManager Class 17

4.1.4 View Layer 17
4.1.4.1 View Class 18

4.2 AR Layer 18
4.2.1 Camera Control Layer 19

4.2.1.1 CameraManager Class 19
4.2.2 Cardboard View Layer 19

4.2.2.1 NoteVisualizer Class 20
4.2.2.2 ARViewManager Class 20

4.3 Sound Layer 20
4.3.1 SoundManager Class 20

4.4 Storage Layer 21
4.4.1 FileManager Class 21

4.5 Hand Gesture Layer 21
4.5.1 HandGestureManager Class 22
4.5.2 NavigationManager Class 22

New Knowledge Acquired and Learning Strategies Used 22

References 24

2

Project High Level Design

Coda

1 Introduction

Music as a form of art has been the common interest of people used to express

feelings and identity through a composition of rhythm, timbre and melody. In different forms

and sounds by making use of the variety of instruments, music is present in almost every

context for numerous purposes. Besides the pleasure of listening, it’s been proven that

playing instruments have positive effects on brain development, especially for spotting

statistical patterns enabling the learner to better predict what would happen next in a pattern,

so every child has the right to better themselves with the help of instruments insomuch as

discovering their musical talents [1].

Over the last 20 years, the number of children learning to play an instrument or

playing an instrument has increased significantly [2]. However 26% of children and 49% of

adults in the UK stated that they’ve given up playing instruments although they’ve learned to

play or started to [2]. Most common reasons for this are loss of interest, instrument cost,

lesson costs and competing pressures from school [2]. Furthermore, the fact that some

instruments are highly immobile by nature makes practicing very challenging for both

individuals and for groups of people who practice together. In most cases, instruments

become idle and forgotten because of the impracticalities mentioned. As a result, buying

instruments may be seen as an unnecessary expense. When the cost of learning instruments

and the instruments itself is taken into consideration in addition to immobility, it can be stated

that instruments can be made further accessible.

Therefore, there is need for solutions to make playing and learning instruments more

sustainable by making them more accessible in several aspects like cost and mobility and we

believe that with the increasing number of smartphones, mobile phones can be used to

address this problem.

1.1 Purpose of the System

To address the need for solutions to make playing and learning instruments more

sustainable by making them more accessible in several aspects like cost and mobility, Coda

will be an application that will use Virtual Reality and Computer Vision to simulate the

experience of playing an instrument for a user, enabling them to practice without workstation,

cost and even sound limitations. By using novel Computer Vision techniques, we will

eliminate the need for any hardware or tools and make the whole experience only depending

on the smartphone, an AR cardboard and the gestures of the user. Different from the current

products in the same context, we will provide a more realistic and immersive experience using

Augmented Reality both visually and aurally.

1.2 Design Goals

1.2.1 Usability

Usability is crucial for Coda. It is the prior design concern during system design. Fundamental

idea of Coda is to mimic the experience of playing an instrument, hence the success of the

system is determined by the ability to mimic such real-life, tangible experience.

Therefore, Coda aims the following during system design in terms of Usability,

● The application should be user-friendly and as easy to use as a real instrument.

● Controls in the system should be straightforward and the instructions should be clear.

The user should be able to choose a piece from the library and start playing in no

longer than 1 minute.

● The application should have clear and concise instructions for initialization. The

initialization stage and initial hand recognition should not take longer than 2 minutes

when application performance is neglected.

1.2.2 Performance

Performance is a substantial requirement for Coda. Since once again, the aim is to mimic the

experience of playing an instrument as intuitively as possible, hence the ability to provide a

real-time performance with instant auditory and visual feedback is another essential goal. For

this, we have made the design as efficient as possible in terms of functions and will utilise a

cloud server if needed to provide better performance.

4

Therefore, Coda aims the following during system design in terms of Performance,

● Frames Per Second (FPS) should not drop below 25.

● Input lag(time between user gesture and recognition in the app) should be less than

2ms

1.2.3 Extendibility

The long-term goal of Coda is to offer users as many instruments as possible for serving our

fundamental mission of accessibility. To address this goal, the design is made in such a way

that the system is divided into proper sub-systems with highly cohesive and low coupled

classes/packages.

Therefore, Coda aims the following during system design in terms of Extendibility,

● Design of the application code should be written in such a way that will enable

addition of new instruments. For instance, all specific instrument classes will be

children of the general Instrument class for extendibility purposes.

● Storage in the system should be designed in such a way that it can be extended to be

shared over a network or by utilising the cloud.

● Design of the network usage should be in a way that it supports a potential

implementation of band mode which allows people from different devices to

collaborate and play different instruments at the same time.

1.2.4 Security

Since Coda will require access to the camera of the mobile phone of the user and record the

footage for some features, it is important that the design of the system will take the security of

these footages into consideration during design.

Therefore, Coda aims the following during system design in terms of Security,

● User data will not be shared with any third parties under any circumstances.

● No user data will be saved without the consent of the user.

1.3 Definitions, acronyms, and abbreviations

UI: User Interface

FOV: Field of View

6DOF: Six Degrees of Freedom

5

Client: Part of the system that the user interacts with.

Server: Part of the system that handles the access to a centralized resource or service.

AR : Augmented Reality. A computer enhanced version of the real-world where virtual objects

can be put on real world objects in an interactive environment.

VR : Virtual Reality. A computer generated world that is completely virtual in terms of

environment and the objects in it which provides a virtual interactive environment to the user.

Computer Vision: Combining/Using advanced Image Processing, Machine Learning and

Deep Learning techniques to enable computers to see as a human does.

1.4 Overview

Coda will be an Android mobile application designed to make instruments more

accessible in terms of cost and mobility. Coda will depend on a system that renders an

instrument in an augmented environment on the smartphone’s screen and creates an AR

environment with the use of only a Google Cardboard like headset. Also, Coda will track the

hand gestures of the user using the smartphone’s camera by Computer Vision techniques in

accordance with the FOV of the user.

As the main feature, the system will give visual and auditory feedback to the user

according to the user interaction by gestures for simulating the experience of playing an

instrument only keeping out the tactile experience. Additionally, the user will be able to

choose between several modes: Free Playing Mode and Practice Mode. These features will

enable the user to either practice freely or practice on a particular piece of their choice from

the library. In the practice mode, the system will provide visual directives for the user to play

the piece correctly, further enhancing the experience and providing ease for learning pieces.

These will be able to be recorded and saved for enabling composing a new piece. For

initializing the system, the user will have to align their hands and environment. The instrument

will be placed according to this alignment and it’s location will not be changed after

initialization.

This report explains the details of the proposed system design in terms of Software

Architecture including Subsystem Decomposition, Hardware and Software Mapping, Data

Management, Access Control Policies, Security, Global Control Flow, handling of Boundary

Conditions and Subsystem Services with the help of Unified Modelling Language (UML) for

proper documentation of the system and clarity of the system design. We aim to come up with

a System Design that complies completely with our Design Goals explained above and

therefore our requirements as explained in the Analysis Report to construct a system that

fulfills the need of our users while providing a usable and efficient application.

6

2 Current software architecture

There doesn’t exist a current system that the application will be built upon, but there

are several similar products that tried to implement the same idea but with different

fundamental objectives and therefore different implementations. For instance the major

difference of Coda from the similar products will be the elimination of the need for

controllers that are extra hardware which cause the product to be more expensive and

less accessible. Although the products may seem similar in terms of idea, elimination of

the controllers create a fundamental difference which distinguish the required software

architecture from the current software architectures strictly. Hence, software architecture

of Coda will be designed from scratch according to the requirements and design goals

explained.

7

3 Proposed software architecture

3.1 Overview

As briefly discussed in the former parts of the report, Coda aims to provide a minimal

architecture in terms of hardware. Therefore, the software architecture of the system is limited

to the smartphone itself. In this section of the report, the planned architecture will be

described in detail by presenting the Subsystem Decomposition and further explaining the

layers described in the Subsystem Decomposition individually. Then mapping of the hardware

and the software in the system is explained. Furthermore, management of the persistent data,

access and security conditions and boundary conditions are discussed.

Further information and all documentation on Coda will be published on,

https://ege0zcan.github.io/coda/

3.2 Subsystem decomposition

Figure 1: Subsystem Decomposition Diagram of Coda

Coda’s architecture is limited to the smartphone itself. All sublayers are within the

SmartPhone Layer, which is the most comprehensive layer of the system. In this architecture,

there is no distinction between the client side and the server side since both sides depend on

8

https://ege0zcan.github.io/coda/

the local system only. However this architecture may be subject to change if there occurs

issues about the processing power of the smartphone.

Within the SmartPhone Layer, there are 5 sub-layers. The GamePlay Layer is the layer that

provides the gameplay experience to the user, responsible from handling the relations

between other layers and the client-side, in a sense. It accesses all other layers for

synchronizing the AR, Sound, Storage and Hand Gesture components of the application with

the user interactions. The AR Layer is responsible from handling the AR operations within the

system and it is accessed by the GamePlay Layer for constructing the AR environment to be

presented to the user as an augmented replicate of the real environment. For achieving this,

the AR Layer also handles the information gathered from the camera of the smartphone. The

Sound Layer is responsible from providing the auditory experience to the user, also

interacting with the device speakers. This layer is also accessed by the GamePlay Layer for

giving the the auditory response according to the user interaction. Storage Layer is the layer

responsible from handling the persistent data management as explained in Section 3.4. This

layer is also accessed by the GamePlay Layer for storing the library songs as well as the user

recordings. Finally, the Hand Gesture Layer is the layer for handling and processing the Hand

Gestures of the user from the camera and recognizing the user interaction, and intention,

accordingly.

Further explanation of the above mentioned layers and their sub-layers is provided in Section

4.0.

3.3 Hardware/software mapping

Coda is an app that is designed to run on Android smartphones implemented on software and

also using hardware components such as the camera and the screen. Although Coda is an

AR based application, it requires no external hardware mapping other than the smartphone

itself. Only the manual and straightforward integration of the smartphone to the Google

Cardboard (or alike) headset is required.

Software components of Coda will be as follows,

● Java will be used as the primary software development language along with Android

Studio for platform-independency, object-oriented tools and compatibility with useful

frameworks and libraries such as Google MediaPipe, Google ARCore etc.

● Unity will be the platform for developing the graphics components.

9

All of the hardware mappings will be done by built-in Android SDK mappings to the

smartphones running on Android. A simple representation of the Hardware/Software Mapping

can be found below in the Deployment Diagram.

Figure 2: Deployment Diagram of Coda

3.4 Persistent data management

Coda will require access to the persistent data storage of the smartphone to keep the

information on recordings, library songs and user settings. Since it is required to recalibrate

the hands and the environment for each use, session specific data is not a matter of

persistent data management.

This data will be stored in a hidden folder named .appdata with several subfolders for

different types of application data as follows.

● Library Song Data

 /lib_songs.dat

● Recordings Data

/recordings.dat

● Settings Data

10

/settings.dat

For storage, it is not required to use an external database since the data to be stored is

relatively small.

Approximate calculation of storage required for Coda is as the following. Note that the number

of recordings allowed and library songs may be subject to change during implementation.

--

Approximate storage used for a single library song data: 3-4 MB [3]

Approximate number of library songs: 10

Maximum number of recordings allowed : 10

Storage used for a single recording: ~2.4 MB/minute [4]

Maximum length of a recording allowed (in minutes) : 10

The data to store the settings: 1 KB

--

Total: [(10 x 3) + (10 x 10 x 2.4) + 0.001] ~= 270 MB

3.5 Access control and security

As mentioned in Section 3.4 we will not use any external databases, only the internal storage

will be utilised, so it is not required to implement an explicit access control mechanism.

Furthermore, since the current version of Coda will not support network connection it will be

unthreatened from malicious software originating from networks.

Once again, the discussed version of Coda will only support single player use which does not

require any kind of sign-up procedure treating all users as a single type of user with the same

access rights. This approach also ensures the security of the user data, which is in fact in

minimal within Coda.

3.6 Global software control

In Coda, synchronization between layers are crucial for the user-experience, as the system is

very interactive and dynamic in the sense that all responses depend on the user interaction

11

whose source will be the device camera and will be recognized by the HandGesture Layer.

Accordingly, auditory response will be given to the user which also requires a real-time

synchronization. Furthermore, the sounds and the AR view also has to synchronized for

showing the user the correct notes to hit on the instruments on time.

As explained above, synchronization is required among almost all layers as a result of the

dynamic nature of Coda. For ensuring such synchronization, all layers that need

synchronization are connected to the GamePlay Layer which will handle the synchronization

among all connected layers. Namely, the GamePlay Layer will handle the synchronization of

the following layers with the user-side,

● Input recognized by the Hand Gesture Layer will be handled by the GamePlay Layer

to help the user navigate in Coda and interact with the AR environment by the Play

Layer.

● Camera view received from the Camera Control Layer will be handled by the

GamePlay Layer to construct the interactable user view by the View Layer.

● Songs are stored in the Storage Layer and it is accessed by the GamePlay layer to

handle loading and playing songs in Coda in a synchronized manner with the view by

also accessing the Sound Layer.

Since there exists no user specific operations in the current version of Coda, no

synchronization is needed for concurrent accesses to a shared source.

3.7 Boundary conditions

3.7.1 Application setup

After installation of the app from the provided platforms (i.e. Google Play Store), Coda will

require access to the device camera. Once the user allows access to these components,

Coda will be ready for use. For startup, files containing library songs and recordings will be

read from .appdata hidden folder. Coda will start up with the main menu screen for further

routing into the application according to the user choices.

12

3.7.2 Session Initialization & Calibration

For starting a session, regardless of mode selection, the primary requirement for session

initialization will be hand and environment calibration. This process is a prerequisite for the

further parts of the application. In other words, the application can not be used without

completing this step.

3.7.3 Recalibration

At any point of any session, in case there is a problem with the current calibration the user will

be able to proceed to the calibration screen once again to correct the calibration. However in

such case, all session data, i.e. progress, will be lost.

3.7.4 Termination

3.7.4.1 Application Termination

Coda can be terminated like regular applications by exiting the application. With this feature,

the user will be able to exit the application regardless of the screen they are in. However in

such case, all session data, i.e. progress, will be lost. This applies for the case of an

application pause since it is very likely that pausing the application might require recalibration.

3.7.4.2 Session Termination

A session of Coda can be terminated from the Exit button in the in game menu. In such case,

if there is a recording process, it will be automatically saved and added to the recordings

library.

3.7.5 I/O Exceptions

Since Coda utilizes the device camera, speakers and the local file system, I/O failures are

possible. Possible I/O exceptions can be listed as the following,

● File Reading/Writing: If there occurs a problem during reading songs from the library

and writing recorded sessions to the local file system, Coda may have issues

proceeding to the relevant screens. This also applies for showing the list of songs in

the library and the list of recordings.

● Corrupted Data: If there occurs a problem with access permission issues for the

local file system, saving recordings may be problematic. In such case, this problem

13

may be resolved by updating the access permission settings for the related folder

through giving necessary instructions to the user.

● Device I/O: If there occurs a problem with the access permission settings of the

device camera or device speakers, then Coda might have issues displaying the AR

representation of the environment and giving auditory feedback according to user

interaction.

3.7.6 Critical Errors

If there occurs a critical error causing an application collapse, Coda will recover in the same

manner as a regular startup. However in such case, all session data, i.e. progress, will be

lost.

4 Subsystem Services

4.1 GamePlay Layer

Figure 3: Subsystem Decomposition for the GamePlay Layer of Coda

This layer is treated like the client-side layer of Coda. Sub-layers of this layer handle the

control flow with the device units like storage, camera and audio. Furthermore, this layer

handles the user interaction and stimulates other layers accordingly. Sub-layers of this layer

is designed in such a way that synchronization of all external layers will be handled by at least

one sub-layer of this layer. This way, the user interaction and response to the user will be

synchronized with the external devices and data.

14

Functionalities and structures of these sublayers will be further discussed in the proceeding

sub-sections.

4.1.1 Song Layer

Figure 4: Subsystem Decomposition for the Song Layer of Coda

This layer is for handling the operations on the songs in Coda. Since this is a class within the

GamePlay Layer, this class layer will contain the structure and definitions of playable

structures of Coda like songs and user recordings. Both of these structures are defined as

Piece’s in Coda, which represent the playable structures. This layer will handle fetching of

stored songs from the local memory, and playing the pieces during run time in sync with the

other layers.

4.1.1.1 Piece Class

This class represents all playable structures in Coda. It is a parent class of the Song and

Recording classes. It contains the mutual definitions of these playable structures in a general

manner and invoke the functions according to the shared behaviour of the child classes like

being played or fetched from memory and so forth.

4.1.1.2 Song Class

This class is a specialised version of Piece. This class is a representation of the library songs.

The distinguishing feature between Song and Recording classes is that pieces represented

by the Song class need to be preloaded by the application developers in the current version

of Coda. Songs are fetched from local memory and played by interacting with the Sound

Layer.

4.1.1.3 Recording Class

This class is a specialised version of Piece. This class is a representation of the user

recorded songs. The distinguishing feature between Song and Recording classes is that

pieces represented by the Recording class need to be recorded by the user and saved.

15

Recordings are saved into local memory, fetched from local memory when needed and

played by interacting with the Sound Layer.

4.1.2 Instrument Layer

Figure 5: Subsystem Decomposition for the Instrument Layer of Coda

This layer is for handling the operations on the instruments in Coda. Since this is a class

within the GamePlay Layer, this class layer will contain the structure and definitions of

interactable structures of Coda that are virtual representations of instruments and their parts

in AR. This layer will handle the interactions of the user with the defined instrument structures

and the parts that the instruments are composed of, depending on the instrument structure.

4.1.2.1 Instrument Class

This class represents all interactable structures in Coda. It is a parent class of the Drum and

is composed of the Part class. It contains the mutual definitions of these interactable

structures in a general manner and invoke the functions according to the shared behaviour of

the child classes like being played and so forth. For the envisaged version of Coda, the

instrument to be implemented is determined as Drums but the implementation of the

Instrument class will be made in an extendable way to allow easy addition of different types of

instruments. Furthermore, possible user interactions will also be instrument specific.

4.1.2.2 Drum Class

This class is a specialised version of Instrument. As explained above, Drums are the first

specialized type of instrument to be implemented in the current version of Coda. This class

will have an implementation specific to the real instrument itself. For the implementation of

this class, domain experts will be consulted.

4.1.2.3 Part Class

This class is a component class of Instrument. As explained above, instruments will be

implemented in a way such that they will be composed of parts, some of which are

16

interactable and some are stable. Parts will also be instrument specific and an instrument

may be composed of a number of different or identical parts depending on the nature of the

instrument. Encore, for the implementation of this class, domain experts will be consulted.

4.1.3 Play Layer

Figure 6: Subsystem Decomposition for the Play Layer of Coda

This layer is for handling the user interactions in Coda. Since this is a class within the

GamePlay Layer, this class layer will be responsible from getting the recognized user gesture

from the HandGesture Layer and applying the gesture accordingly. This layer will handle the

interactions of the user with menus, with the instruments and the calibration screens. This

layer will utilise data gathered from the other layers to determine the user action within Coda.

4.1.3.1 GameManager Class

This class is responsible from managing the input and output data in this layer that will be

utilised to provide the dynamics of the game. As explained above, user interactions will be

handled to allow the user to interact with menus, calibration screens and instruments. In other

words, user actions will be determined and applied by the help of this class.

4.1.4 View Layer

Figure 7: Subsystem Decomposition for the View Layer of Coda

This layer is for displaying the game view to the user as constructed by the AR Layer by

communicating with it. Since this is a class within the GamePlay Layer, this class layer will be

responsible from getting the constructed AR environment from the AR layer and displaying it

17

on the screen of the smartphone. Mapping of the user gestures and the display coordinated

will be made according to the representation in this layer as this layer represents what the

user sees and interacts with.

4.1.4.1 View Class

This class will represent what is displayed in the AR environment to the user. Coordinates

and representation of the interactable structures are displayed as defined in this class.

Therefore, mapping of the user interactions according to the gestures on the AR environment

will be made according to what is stored in this class.

4.2 AR Layer

Figure 8: Subsystem Decomposition for the AR Layer of Coda

This layer is treated like the hardware layer of Coda in terms of display and video . Sub-layers

of this layer handle camera input and the displaying of the AR environment as determined by

the camera input, calibration and instrument structures. Furthermore, this layer handles the

user visualization of notes that are instrument specific. Also, the AR view will be created by

the input received from the CameraControl Layer and will be outputted by the Cardboard

View Layer.

Functionalities and structures of these sublayers will be further discussed in the proceeding

sub-sections.

4.2.1 Camera Control Layer

Figure 8: Subsystem Decomposition for the Camera Control Layer of Coda

18

This layer is for handling the camera input in Coda. Since this is a class within the AR Layer,

this layer will be responsible from recording the real environment and passing it to the other

layers for constructing the AR Layer as well as recording the hand gestures to be passed onto

other classes for gesture recognition. This layer will handle capturing of hand gestures and

environment. This layer will be an input only layer, meaning that it will only be utilised to take

the input from the hardware device.

4.2.1.1 CameraManager Class

This class is responsible from managing the camera as a hardware device. As explained

above, camera input will be used in different layers. For appropriately capturing these inputs,

CameraManager Class will be used.

4.2.2 Cardboard View Layer

Figure 9: Subsystem Decomposition for the Cardboard View Layer of Coda

This layer is for displaying the game view to the user appropriately for the CardBoard

constructed by the AR Layer by communicating with it. Since this is a class within the AR

Layer, this layer will be responsible from constructing the AR View appropriately according to

the state of the instruments, notes etc. Also, visualization of notes will be handles in this layer

to construct a proper visualization of the notes correctly in the AR environment.

4.2.2.1 NoteVisualizer Class

This class will be responsible from the visualization of different notes in an instrument specific

manner. This class will be used by the ARViewManager class to determine what to construct

in the AR environment for each note.

4.2.2.2 ARViewManager Class

This class will construct what will be displayed in the AR environment to the user. It will

receive the structures to be constructed in AR from other layers and construct the proper AR

representations as an output to be displayed to the user.

19

4.3 Sound Layer

Figure 9: Subsystem Decomposition for the Sound Layer of Coda

This layer is for providing the audio experience to the user as fetched from memory in the

case of songs and recordings and as defined in the instrument behaviours in the case of

interactions with the instruments. This layer will handle interactions with the audio

devices.This layer will be an output only layer, meaning that it will only be utilised to give

auditory responses to the user.

4.3.1 SoundManager Class

This class is responsible from managing the speakers/ earphones as a hardware device. As

explained above, auditory feedback will be given in several cases in Coda and is crucial for

replicating the real-life experience of playing the instrument. For appropriately replicating the

sounds of instruments and playing pieces, SoundManager Class will be used.

4.4 Storage Layer

Figure 10: Subsystem Decomposition for the Storage Layer of Coda

This layer is for handling the I/O operations regarding writing and fetching from memory. This

layer will handle interactions with the storage components for persistent data management.

This layer will both receive inputs and give outputs, meaning that it will both write to the

memory and read from the memory. Writing to the memory will be performed in cases of

recordings and reading to the memory will be performed to play songs from the library or to

play recorded pieces of the user.

20

4.4.1 FileManager Class

This class is responsible from managing the file operations on the local memory of the device

as explained in Section 3.4. As explained above, recordings of the user will be written to the

memory and they will be available for being played once written to the memory. Also,

pre-loaded songs will be available to be played by default. In such cases, local memory and

file systems of the device will be accessed by the FileManager Class and operations will be

managed appropriately.

4.5 Hand Gesture Layer

Figure 11: Subsystem Decomposition for the Hand Gesture Layer of Coda

This layer is for handling the hand gestures of the user and recognizing them to navigate in

the app, receiving user input and interacting with the instruments. This layer will be

responsible from recognizing the hand gestures of the user and classifying them as one of the

defined gestures in the app according to the instrument being played or the part of the

application being interacted with. Then the recognized and classified gestures, will be passed

to other layers for applying the user interaction to the structures and providing the correct

responses.

4.5.1 HandGestureManager Class

This class is responsible from recognizing and classifying the user gestures once received

from the camera. As explained above, gestures will be instrument specific and possible

gestures will be pre-determined within the app for each instrument individually and for all

screens in the app.

4.5.2 NavigationManager Class

This class is used to use hand gestures to navigate in the application. For each screen,

possible navigation gestures will be defined and the users will be able to navigate in the app

according to their gestures once the gestures are recognized and classified by the

HandGestureManager class.

21

5 New Knowledge Acquired and Learning Strategies Used

First and foremost, as mentioned in the previous documents we plan to learn about Image

Processing in order to understand hand and finger gestures for enabling the user to interact

with the instruments in the augment reality we render without the need for any other external

tools like controllers. Since Image Processing might come short for detecting gestures with a

non-constant background, and we will need to employ the help of deep learning. Hence we

will learn about Computer Vision implemented by advanced Deep Learning and Image

Analysis techniques. We plan to go over different implementations of such applications and

writing our own simple code snippets which will give us the chance to gain hands-on

knowledge.

As a novel approach, we’ve decided to learn Google’s MediaPipe for implementing the

Computer Vision requirements of Coda for Hand Gesture Tracking. But since MediaPipe is

not yet integrated with Unity directly, it is likely that we are going to have to reduce the use of

Unity to the Graphics components of Coda only. For the rest, we are going to use Android

SDK which we are already familiar with.

Another challenge for us will be programming an AR app that overlays 3D objects onto real

world. Most of the current systems do not employ AR with VR Glasses/Cardboards, hence we

will need to understand and learn how to reconstruct an environment to be able to put AR

objects to a real environment. We plan to follow along with online video tutorials and read

from other online materials in order to learn about this topic. At this point, we might also

perform interviews with experts from SimSoft which is a company experienced with AR and

VR systems, by the help of our Innovation Expert.

If time permits, we would like to add certain cloud computing functionalities to our project for

improving performance. In that case online learning will most probably be our primary source

for learning the basics whereas doing exercises will be necessary for grasping the

implementation details.

22

6 References
[1] Smith. B, “New study demonstrates link between music and statistical learning,” The

Sydney Morning Herald, 2019. [Online]. Available:

https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-and-statisti

cal-learning-20170514-gw4eec.html. [Accessed: Oct. 10, 2019].

[2] ABRSM, ABRSM:. [Online]. Available:

https://es.abrsm.org/en/making-music/4-the-statistics/. [Accessed: Oct. 10, 2019].

[3] “Size of average song in MB,” Spotify.Community, 05-Sep-2015. [Online]. Available:

https://community.spotify.com/t5/Android/Size-of-average-song-in-MB/td-p/1200704.

[Accessed: Dec. 27, 2019].

[4] “How long can a voice recorder on an Android record?,” Quora, 03-Jun-2018. [Online].

Available: https://www.quora.com/How-long-can-a-voice-recorder-on-an-Android-record.

[Accessed: Dec. 27, 2019].

23

https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-and-statistical-learning-20170514-gw4eec.htm
https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-and-statistical-learning-20170514-gw4eec.htm
https://es.abrsm.org/en/making-music/4-the-statistics/
https://community.spotify.com/t5/Android/Size-of-average-song-in-MB/td-p/1200704
https://www.quora.com/How-long-can-a-voice-recorder-on-an-Android-record

