

 Bilkent University

Senior Design Project
Coda

Final Report

Merve Kılıçarslan, Yağız Efe Mertol, Ege Özcan, Çağla Sözen, Murat Tüver

Supervisor: Prof. Dr. Uğur Güdükbay
Jury Members: Prof. Dr. Halil Altay Güvenir, Prof. Dr. Fazlı Can

Innovation Expert: Prof. Dr. Veysi İşler (SimSoft)

Final Report
May 26, 2020

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the
requirements of the Senior Design Project course CS491.

Contents

Introduction 3

Requirements Details 4
2.1 Functional Requirements 4

2.1.1 Instrument 4
2.1.2 Free Mode 4

2.2 Non-Functional Requirements 4
2.2.1 Usability 4
2.2.2 Responsiveness 4
2.2.3 Extendibility 4

2.3 Pseudo-Requirements 5
2.3.1 Implementation Constraints 5
2.3.2 Economic Constraints 5
2.3.3 Professional and Ethical Constraints 6
2.3.4 Time Constraints 6
2.3.5 User Experience Constraints 7

Final Architecture and Design Details 7
3.1 Overview 7
3.2 Subsystem decomposition 8
3.3 Hardware/software mapping 9

Development/Implementation Details 10
4.1 Working With Google MediaPipe 10

4.1.1 Using MediaPipe in Unity 11
4.1.2 Mapping the Hand Model 12

4.2 Working With Unity 12
4.2.1 Cameras in Unity 12
4.2.2 Sound Management and Collision Detection. 13

4.3 Working With Manomotion 14
4.3.1 Getting Manomotion SDK 14
4.3.2 Hand Tracking with Manomotion 15
4.3.3 Gesture Recognition with Manomotion 16

4.4 Working With Google VR 16
4.4.1 Stereoscopic Rendering 16
4.4.2 Hand Occlusion 17
4.4.3 No Camera Rendering while Camera is Working 17

Testing Details 18
5. 1 Verification 18
5.2.2 Validation 18

5.2.2.1 Development Testing 19
5.2.2.2 Release Testing 19
5.2.2.3 User Testing 19

Maintenance Plan and Details 19
6.1. Corrective Maintenance 20
6.2. Preventive Maintenance 20
6.3. Adaptive Maintenance 20
6.4. Perfective Maintenance 21

Other Project Elements 21
7.1. Consideration of Various Factors 21
7.2. Ethics and Professional Responsibilities 22
7.3. Judgements and Impacts to Various Contexts 23
7.4. Teamwork and Peer Contribution 24
7.5. Project Plan Observed and Objectives Met 27
7.6. New Knowledge Acquired and Learning Strategies Used 28

7.6.1. Unity 28
7.6.2. Hand Tracking 28
7.6.3. VR 29

References 32

2

Project Final

Coda

1 Introduction
Music as a form of art has been the common interest of people used to

express feelings and identity through a composition of rhythm, timbre and melody. In
different forms and sounds by making use of the variety of instruments, music is
present in almost every context for numerous purposes. Besides the pleasure of
listening, it’s been proven that playing instruments have positive effects on brain
development, especially for spotting statistical patterns enabling the learner to better
predict what would happen next in a pattern, so every child has the right to better
themselves with the help of instruments insomuch as discovering their musical
talents [1].

Over the last 20 years, the number of children learning to play an instrument
or playing an instrument has increased significantly [2]. However 26% of children and
49% of adults in the UK stated that they’ve given up playing instruments although
they’ve learned to play or started to [2]. Most common reasons for this are loss of
interest, instrument cost, lesson costs and competing pressures from school [2].
Furthermore, the fact that some instruments are highly immobile by nature makes
practicing very challenging for both individuals and for groups of people who practice
together. In most cases, instruments become idle and forgotten because of the
impracticalities mentioned. As a result, buying instruments may be seen as an
unnecessary expense. When the cost of learning instruments and the instruments
itself is taken into consideration in addition to immobility, it can be stated that
instruments can be made further accessible.

Therefore, there is need for solutions to make playing and learning
instruments more sustainable by making them more accessible in several aspects
like cost and mobility and we believe that with the increasing number of smartphones,
mobile phones can be used to address this problem.

This report explains the details of the final version of Coda including
Requirements Details, Final Architecture, Development/Implementation, Testing
Details, Maintenance Plan, with the help of UML for proper documentation of the
system and clarity of the final system design. Furthermore, this report explains the
Consideration of Various Factors, Ethics, Impact, Project Plan and New Knowledge.

2 Requirements Details

2.1 Functional Requirements

2.1.1 Instrument
The main functionality of Coda depends on the rendering of an instrument in Virtual
Reality. Thus, the first requirement is modeling the instrument in 3D that enables the
user to interact with it visually, and get both auditory and visual feedback. For
feasibility reasons, our first instrument of choice is Drums.

2.1.2 Free Mode
In the Free Mode, the use is able to play instruments however they like without any
constraints or directives. This mode can be used for making new compositions or
trying an instrument to learn how the instrument is used and so forth.

2.2 Non-Functional Requirements

2.2.1 Usability
Since one of the main objectives of Coda is providing accessibility, the following
requirements should be matched

● Gestures to play an instrument should be intuitive. The player should be able
to successfully complete the desired action in a single gesture.

● Controls in the system should be straightforward and the interface should be
user-friendly. The user should be able to choose a piece from the library and
start playing in no longer than 1 minute.

● The application should have clear instructions for initialization. The
initialization stage and initial hand recognition should not take longer than 2
minutes when application performance is neglected.

2.2.2 Responsiveness
Responsiveness of Coda is critical since the application works in real-time and
should provide instant visual and auditory feedback as a real instrument would. The
following responsiveness requirements should be met,

● Frames Per Second (FPS) should not drop below 25.

2.2.3 Extendibility
For the main purpose of Coda, the application should be extendible by the following,

● Design of the application code should be written in such a way that new
instruments that will enable addition of new instruments.

4

● Storage in the system should be designed in such a way that it can be
extended to be shared over a network or by utilising the cloud.

● Design of the network usage should be in a way that it supports a potential
implementation of band mode which allows people from different devices to
collaborate and play different instruments at the same time.

● Practice mode can be implemented to extend Coda, where the user will
choose a piece from the library provided with the app. Library will also contain
pieces saved using Free Mode. According to the piece chosen, the user will
be given visual directives and will be expected to interact correctly with the
instrument. This mode can be used to practice a particular piece.

● Recording a session may be implemented for the extendibility of Coda and
stop the recording whenever they want. These recordings will be saved in the
library of the app and will be offered among the pieces in the library for
playing in the Practice Mode.

2.3 Pseudo-Requirements

2.3.1 Implementation Constraints
Since Coda only depends on a smartphone and a Google Cardboard headset, it is
important that the smartphone used provides the following requirements,

● Phone used has at least one camera.

● Phone used should have Android 7.0 or higher installed.

● Coda relies on real-time gesture detection and recognition. Manomotion Lite
SDK used for hand gesture recognition runs the models on the cloud, so
Coda requires a stable internet connection.

● GitHub was used for Version-Control.

● Trello was used for Issue Tracking.

● Implemented instruments ,if extended to multiple instruments, must not be
played while attached to the body. Since we are using a headset, camera is
not going to be able to detect the hand gestures while playing instruments like
violin. Instead instruments like drums which are played within camera’s line of
sight were implemented.

2.3.2 Economic Constraints
During the implementation of Coda, the following economical constraints was taken
into account since the project is not funded by any means,

5

● Frameworks and libraries used are open-source, so free to use.

● The website is be powered by GitHub thus, there is no domain rental cost.

● GitHub is a free Version Control tool so there is be no expense for Version
Control.

● For development and demo, Google Cardboard or a similar headset is used
which is expected to cost between 20-60 TL [8].

● One-time-only fee for publishing the app on Google Play is 25 USD. However
Coda is not yet be published to the Google Play store.

Total cost of the application will come to approximately 40 USD.

2.3.3 Professional and Ethical Constraints
All the practices during the implementation and during deployment of Coda complies
with the following in accordance with the Code of Ethics proposed by National
Society of Professional Engineers [9],

● Coda is an application that depends on music. Coda either owns the rights of
all the pieces and songs provided in the library or pays for including them in
the library to the right owner.

● User data is not be shared with any third parties under any circumstances.

● No user data is not saved without the consent of the user.

● No ads are be displayed for financial means.

● Any external software or library used in the development of the project were
properly referenced if it is protected by copyright.

2.3.4 Time Constraints
Development of Coda and it’s documentation was be in line with the following
schedule [10],

● - Project Specifications: Monday, October 14, 2019
● - Analysis Report: Monday, November 11, 2019
● - High-Level Design Report: Friday, December 31, 2018
● - Low-Level Design Report: Monday, February 17, 2020
● - Final Report: Thursday, May 27, 2020
● - Presentations & Demonstrations: May 27 - June 14, 2020

6

2.3.5 User Experience Constraints
For providing a comfortable user experience the following should be taken into
account,

1. The app should not be used for more than 30 minutes at once in order not to
lose the notion of spatial awareness which may cause headaches and
dizziness [11].

2. Rendered virtual instrument should approximately is the same size as the
original instrument for playing intuitively and enhancing the learning process.

3. Visual directives given to the user should be are easily understandable by the
user.

4. For better auditory immersion, headphones may be utilised by the user by
plugging them in the phone.

5. An internet connection must be established in order to use the application.
Otherwise hand tracking is not possible.

6. The app is launched in English since it is more universal. Other language
implementations were currently disregarded.

3 Final Architecture and Design Details
3.1 Overview

Coda aims to provide a minimal architecture in terms of hardware and comply to the

architectural principles of Unity. Therefore, the software architecture of the system is

restricted to the smartphone components. In this section of the report, the final

architecture of the final system will be described in detail by presenting the

Subsystem Decomposition and further explaining the layers described in the

Subsystem Decomposition individually. Then mapping of the hardware and the

software in the system is explained.

Further information and all documentation on Coda will be published on if comparison
between the final and the planned architecture is inquired,

https://ege0zcan.github.io/coda/

7

https://ege0zcan.github.io/coda/

3.2 Subsystem decomposition

Figure 1: Subsystem Decomposition Diagram of Coda

Coda’s architecture is limited to the smartphone itself. All sublayers are within the
SmartPhone Layer, which is the most comprehensive layer of the system. In this
architecture, there is no distinction between the client side and the server side since
both sides depend on the local system only. The only external subsystem is within
the Hand Gesture Layer (Manomotion) since the SDK used for hand tracking runs the
Computer Vision models on the cloud requiring internet connection. For the sake of
simplicity we did not include the internal subsystem details of the libraries used
during development.

Within the SmartPhone Layer, there are 5 sub-layers. The GamePlay Layer is the
layer that provides the gameplay experience to the user, responsible from handling
the relations between other layers and the client-side, in a sense. It accesses all
other layers for synchronizing the VR, Sound, Storage and Hand Gesture
components of the application with the user interactions.

The VR Layer is responsible from handling the VR operations within the system and
it is accessed by the GamePlay Layer for constructing the VR environment to be
presented to the user as an augmented replicate of the real environment. For
achieving this, the VR Layer also handles the information gathered from the camera
of the smartphone. Internal implementation of the VR layer consists majorly of
Google VR library components and the AR camera provided in the same library for
handling VR application requirements like getting data from the camera input and
stereoscopic rendering for the VR glasses.

8

The Sound Layer is responsible from providing the auditory experience to the user,
also interacting with the device speakers. This layer is also accessed by the
GamePlay Layer for giving the the auditory response according to the user
interaction. This layer consists of the sound assets in unity and the SoundManager
class that manages the Audio Listeners of Unity according to the desired
functionality. The sound layer accesses the storage layer to fetch the related audio
files from the file system once it is called by the Part class in the Instrument layer.

Storage Layer is the layer responsible from handling the persistent data management
and storing the game related data like the audio files. This layer is designed to also
accessed by the GamePlay Layer for storing the library songs as well as the user
recordings however this feature is not implemented for the final version of Coda due
to time constraints. Storage Layer is mainly used to access the specific Instrument
part sounds by the Sound Layer.

Finally, the Hand Gesture Layer is the layer for handling and processing the Hand
Gestures of the user from the camera and recognizing the user interaction, and
intention, accordingly. This layer consists of the Manomotion Library which is chosen
as the hand tracking library used for the final version of the project. This layer is used
with a Manomotion Manager instance to track the position of the hands continuously
and to detect hand gestures for interacting with the menu.

3.3 Hardware/software mapping

Coda is an app that is designed to run on Android smartphones implemented on
software and also using hardware components such as the camera and the screen.
Although Coda is an AR based application, it requires no external hardware mapping
other than the smartphone itself. Only the manual and straightforward integration of
the smartphone to the Google Cardboard (or alike) headset is required.

Software components of Coda is as follows,

● Java will be used as the primary software development language along with
Android Studio for platform-independency, object-oriented tools and
compatibility with useful frameworks and libraries such as Manomotion,
Google VR etc.

● Unity will be the platform for developing the graphics components.

All of the hardware mappings will be done by built-in Android SDK and Unity
mappings to the smartphones running on Android. A simple representation of the
Hardware/Software Mapping can be found below in the Deployment Diagram.

9

Figure 2: Deployment Diagram of Coda

4 Development/Implementation Details

Development details of Coda consisted of 4 main components which can be reduced
to the following subsections,

● Working with Google MediaPipe.
● Working with Unity.
● Working with Manomotion.
● Working with GoogleVR.

Some of these components were not included in the final implementation but
consumed more time compared to the components that were used in the final
version. During the development, we had to make a lot of design decisions according
to the time, environment and requirements constraints. Effects of these components
will be explored in detail in the proceeding subsections.

4.1 Working With Google MediaPipe

Working with MediaPipe was very challenging in terms of the following aspects,

● Using MediaPipe in Unity.
● Mapping the Hand Model with the real time Hand Data.

We will explore these aspects in the proceeding sub-sections,

10

4.1.1 Using MediaPipe in Unity

As mentioned before, MediaPipe was the best library to be used for hand tracking
and gesture recognition which was highly modifiable according to our needs and
which was completely open source. However MediaPipe was a new library which
launched in the last year, making it documentation and compatibility lacking. Our
initial idea was to use the Vuforia library which also implements MediaPipe inside of
it. However with that decision, we realized that because of the Tensorflow models
used in MediaPipe, Unity Asset was missing from MediaPipe. So we had to find a
way embed Mediapipe as a Unity asset and this led us to the decision to give up on
Vuforia to be able to modify the assets of MediaPipe individually such that we would
be able to port it to Unity.

We made extensive research on Stack Overflow and GitHub to find people who
successfully used MediaPipe in Unity. However we found out that Google explicity
announced that regardless of the high number of requests, they were not planning to
port MediaPipe to Unity. So we had to come up with our own solutions to use
MediaPipe in Unity.

The first approach we used was to port Tensorflow Lite to Unity which would
theoretically solve the incompatibility problem of the Tensorflow Models used in
MediaPipe. For this reason, we tried to replicate and used a Unity plugin called
TensorflowLite4Unity which was used by several other developers for similar
projects. This plugin would solve the problem of quantized models that are not
currently runnable by the Unity Interference Engine by integrating TFLite inference to
the Unity Engine with a good performance. We tried several approaches to be able to
use this plugin in unity with MediaPipe, however the code for the plugin was very
poorly documented and complex. In the end we could not manage to use the plugin
successfully in Unity to support hand tracking with MediaPipe.

The second approach used was to export MediaPipe as an Android Archive (AAR)
file to add it as if it was an external android library to call the Java functions in the
Unity application. So we needed to write extra functions to the AAR build we created
from MediaPipe such that it would behave as we needed in Unity. We wrote several
more functions into MediaPipe to provide the functionality we would need in Unity for
Hand Tracking and created a build from the modified MediaPipe library. However
when we modified the library, dependencies for the core MediaPipe library wouldn’t
be injected in the exported AAR package. It would only show the names of the empty
functions without the compiled functions. For solving this problem, we tried the FAT
AAR Gradle plugin which is a plugin for compacting all the dependencies of an AAR
into another library such that it would create another library file to provide
independent building from the dependencies.

Finally, despite of all the approaches we tried we would lose the dependencies of
MediaPipe while trying to build a custom library which extends mediapipe such that it

11

would be appropriate for the needs of our application. Since we were not able to
solve this problem, we contacted foreign developers, field experts however we were
not still able to solve the problem after an extreme amount of effort in almost 3
months. As a result, we finally decided to switch ton Manomotion due to time
constraints despite the restricted functionality offered by Manomotion.

4.1.2 Mapping the Hand Model

For mapping a hand model to the data fetched from the Hand Tracking API, we found
a 3D hand model that was usable and modifiable in Unity. We first started to build the
model for the data received from Google MediaPipe which returned 21 3D points that
were used to represent certain points in each hand. Hand model determined to be
used consisted of 30 points that were similar to the ones defined in MediaPipe.
However the challenge here was to synchronize the movement of the points that
were defined in the hand model but not Mediapipe. For this purpose, mathematical
and geometrical calculations were needed. So we created three classes to manage
the movement of the hands according to the data obtained from MediaPipe:
HandData, HandGameObjectData and HandManager.

Hand Data class was responsible from getting the handling the data received form
Mediapipe in the form of 21 3D points in the Unity space. This class was never tested
as we never managed to get MediaPipe to work in Unity. HandGameObjectData
class was responsible from the hand model in unity with 30 points. And finally,
HandManager would synchronize the Hand Game Object according to the data
received from Hand Data by making the required geometrical calculations to render
accurately.

Unfortunately, none of the classes were used in the final implementation since
MediaPipe was not used as the Hand Tracking library and Manomotion Lite SDK only
provided a bounding box and palm center coordinates for hand tracking which would
not be sufficient for mapping a complex hand model in the game with the proper
movements.

4.2 Working With Unity

Working with Unity was challenging in terms of the following aspects,

● Understanding and adjusting the camera for VR and Hand Tracking.
● Sound Management and Collision Detection.
● Architecture of Unity.

We will explore these aspects in the proceeding sub-sections,

12

4.2.1 Cameras in Unity

Camera organization in Unity for a VR application was critical to understand to be
able to modify the application according to the needs of Coda. We used two cameras
to form a correct view for the VR application with stereoscopic rendering and for also
getting the camera input from the physical camera of the mobile phone. We
positioned the camera such that it would render a scene close to reality with a
real-life like instrument when rendered on the VR glasses. A Tracked Pose Driver
was attached to the camera to track the head movements of the user and the
headset. The Pose Driver tracked the rotation and position of the head of the user
along with the headset and rendered the application view at each update. This driver
was controlled by the ARCameraManager Script. Furthermore, a
GvrPointerPhysicsRaycaster was attached to the same camera to provide a behavior
similar to the standards Physics raycaster, except that it raycast modes are
specifically designed for Google VR.

Cameras were also used for managing sounds and audio. Details of their
management will be explained in the next section.

4.2.2 Sound Management and Collision Detection.

As explained in the previous subsection, the camera was utilised in the application to
manage sounds and audio. An audio listener was attached to the camera to make
the sounds. The architecture for managing sounds were controlled by a Sound
Manager and each Instrument Part had its unique sound that was attached to its
particular sound via it’s part name. Collision Detection was handled by the colliders in
Unity since we already received 3D Hand position information from the Manomotion
SDK and the behaviour in the case of a collision was determined by the isHit()
function of each instrument part.

Sound Manager in Coda controlled the sounds in the game from the Audio Listener
attached to the camera that was also used to control the movement of the phone to
adjust the VR rendering. The Audio Listener was commanded by the Sound Manager
script. Sound Manager class followed the Singleton design pattern and contained an
instance of itself as the singleton instance. Lifetime of this instance extended as long
as the application was on. According to the instrument part in collision with the
hands, the path was determined and the following method was called to make the
appropriate sound accordingly,

public bool playPartSound(string path)

 {

 print(path);

 GameObject soundGameObject = new GameObject("Sound");

 AudioSource audio =

13

soundGameObject.AddComponent<AudioSource>();

 if (audio.PlayOneShot(GetAudioClip(path)))

 return true;

 return false;

 }

This method was used in the implementation of the Part class. Parts were used both
for detecting collisions and for fetching the appropriate sound in the case of a
collision with themselves. Each part in Coda had a part_name that was also used to
point the related audio file. When a Part was detected to be collided with the hands of
the user, the collider in the model was stimulated and the isHit method was used as
the Event Trigger in the part to pass the sound manager the related information
about the audio file to be played as the following.

public bool isHit()

 {

 return SoundManager.Instance.playPartSound(part_name);

 }

4.3 Working With Manomotion

Working with Manomotion was challenging in terms of the following aspects,

● Contacting Manomotion for the SDK
● Using Manomotion SDK for Hand Tracking.
● Using Manomotion SDK for Gesture Recognition.

We will explore these aspects in the proceeding sub-sections,

4.3.1 Getting Manomotion SDK

The only available alternative to Google MediaPipe was the Manomotion SDK. We
were aware of the fact that Manomotion had two different kinds of SDK, one being
free and the other one being paid. Because Manomotion Free SDK did not offer the
exact functionalities we needed, our priority was always using Google MediaPipe. But
as an alternative, we also requested the Free SDK from Manomotion in January.
Unfortunately, we didn’t receive it until March and when we received it we realized
that it was much more constrained than we initially thought.

14

For getting the SDK, we first filed a request through the Manomotion website.
However we were informed that the requests were addressed only with the discretion
of the Manomotion Team arbitrarily. We waited for two months however we did not
receive any response from the Manomotion team through the website or via email.
Then we contacted some members of the Manomotion team via Linkedin. By this
way, we finally received the Manomotion Lite SDK after waiting for almost 3 months.
We continued to contact the team to request a 1-month free trial of the Pro SDK as
we realized that the Lite SDK was not sufficient for the implementation of the
complete version of Coda. However we did not end up with a positive response on
the one month trial.

So we postponed working with the Manomotion SDK for hand tracking until we were
sure that we wouldn’t be able to use Google MediaPipe for hand tracking. Finally
when we decided to switch to Manomotion SDK, since we couldn’t get the Pro SDK,
we implemented according to the constraints proposed by the Manomotion Lite SDK
and continued the rest of the development according to these.

4.3.2 Hand Tracking with Manomotion

After we received the Manomotion Lite SDK, we started reading the documentation
and watching the tutorials available in the Manomotion Ecosystem where the
developers given permission to use the Manomotion SDK discuss issues they went
through and their solutions.

Using Manomotion Lite SDK was fairly simple to use because it was designed
specifically for Unity. We used two features of the Manomotion SDK: Hand Tracking
and Gesture Recognition.

Hand Tracking in Manomotion was used for locating the bounding box of the hand
and locating the palm center. Adding the Manomotion Manager to the scene in Unity
was sufficient to receive Hand Data in Unity. However there was no rendering of the
hands on the virtual environment so we wrote a HandCollider script to receive the
information from manomotion manager and synchronize the hand/drum stick models
according to the data received from Manomotion. The following code segment was
used to update the location of the visual hand model according to the hand data from
Manomotion with the required calculations,

Vector3 fetchedHandInfo =

manomotionManager.Hand_infos[0].hand_info.tracking_info.palm_center;

float handDepth =

manomotionManager.Hand_infos[0].hand_info.tracking_info.depth_estimation;

Vector3 handLocation = new Vector3(

15

(fetchedHandInfo[0]*4.1f)-2,(fetchedHandInfo[1]*2.86f)-1.6f,(handDepth*2.5f)+1

);

transform.localPosition = handLocation;

4.3.3 Gesture Recognition with Manomotion

For interacting with the menus, we used the Trigger Gestures Class of Manomotion.
Gestures in this class are used for events in the application that are used in place of
a click. These kinds of gestures can be defined as a sequence of hand states either
customly defined or predefined by the Manomotion SDK. We used the predefined
gestures defined in Manomotion because the only gesture to be defined in Coda was
going to be for menu interactions.

Once again, Gesture Recognition in Manomotion was used for determining the states
and hand poses at every update of Unity. We used the ManoClass: Pinch class to
compare the current pose of the hands with the state defined in this class.
Implementation of this part was fairly easy. The only problem caused by using
Manomotion Lite SDK for both Gesture Recognition and Hand Tracking is when we
were constrained by the performance of Manomotion hand tracking and hand
recognition.

4.4 Working With Google VR

Working with Google VR was challenging in terms of the following aspects,

● Rendering the scene stereoscopically for AR.
● Trying occlusion for showing hands from the camera.
● Stopping Camera from rendering the background for performance while still

using the camera for hand detection.

We will explore these aspects in the proceeding sub-sections,

4.4.1 Stereoscopic Rendering

First challenge to setup the application as an AR application was to render the
application according to the VR glasses to be used. Coda was planned to be a MR
application during the design phases, so focused on using an AR application on the
glasses. For this, we initially started out using Google ARCore which is the library
designed to create AR applications. However after trying the library with several
different example applications, reading the documentation and trying to find similar
applications to Coda on StackOverflow, we acknowledged that using an AR
application was not feasible with Google ARCore.

16

Then we used Google VR library to create an application that automatically had
stereoscopic rendering because it was already designed to be rendered in VR
glasses. After reading the documentation and making some tweaks according to the
results of our research, we managed to render the camera input as the background in
stereoscopic view instead of a completely virtual background in a MR manner.
However after implementing the basic functionality of the application we realised that
forcing the application to render the background created a serious overhead for the
application and decided to switch into VR instead of MR for performance. Challenges
been through after this decision will be discussed in the proceeding subsections.

4.4.2 Hand Occlusion

After managing to render the application stereoscopically and in AR, the second
change decision we made regarding the design of the application arose from the
problem of occlusion. Although the Hand Tracking libraries used in the application
returned 3D positions of the hands, automatic occlusion of the hands such that they
would appear in front of the instrument models were not possible. Because such kind
of feature was only provided by mobile phones with a depth-sensitive camera, which
was decided not to be a prerequisite for using Coda since the primary mission of the
application is to make instruments more accessible. Hence we once again decided
that creating a modifiable and moveable hand model such that it’s movement would
be synchronized with the hand data fetched from the hand tracking libraries in VR
instead of occlusion with AR would be a better solution.

4.4.3 No Camera Rendering while Camera is Working

Finally, our problems reduced down to the problems we faced as a result of the
decision to use VR instead of AR or MR. The major challenge we faced at this point
was to stop the camera from rendering in the background while still fetching the
camera input for hand detection with the hand tracking APIs. The redundant
rendering of the camera was coverable by the VR room in Unity however it created a
huge performance overhead for the application. Furthermore, the room was torn at
some arbitrary points and the camera input was showing from those tears.

For being able to get the camera input and render it in VR, our approach is to use
two cameras, one being for getting the camera input and the other for rendering the
virtual environment and the virtual instrument. Although we only need the AR camera
for hand tracking, it is not possible to restrict the functionality of the camera in such a
way, instead it also renders the complete input as the background. We worked
around this issue by setting the camera input outside of the virtual environment such
that it would be left at the back. This way since Unity does not render objects which
are left behind another object, we eliminated the overhead of rendering the camera
input.

17

For the tears in the virtual environment, we had to adjust the perspective of the
screen to be rendered by the camera according to the virtual room such that it
wouldn’t intersect with the environment. So we had to adjust the distance between
the furthest point of the virtual room and the camera to make it smaller than the
distance between the camera and the screen. This way, there were no torn parts of
the virtual room.

5 Testing Details

5. 1 Verification

We used Agile development methodology in Coda and used Scrum as a framework,
hence we developed the project in small increments called sprints. We performed the
verification activities of Coda embedded within the Sprints as soon as related
components were ready. So at each Sprint, we made sure that Coda was built
correctly which was much easier and much less expensive compared to a huge and
comprehensive verification at the end of several sprints.

Following activities will be performed for the verification of Coda,

● Reviews: We performed code reviews before completing a code for making
sure the code committed was free of first level defects and to increase the
quality of code and exploring alternative and better solutions. As a side effect,
code reviews promoted sharing knowledge and responsibility between the
team members. Since we performed pair programming, reviews were in
parallel with programming.

● Walkthroughs: We performed walkthroughs whenever a team member was
going to take on a task which was previously assigned to somebody else, or
when somebody was assigned to make an implementation related to another
component for better understanding the code and using it whenever needed.

● Automatic Static Code Analysis: We used the automatic static code
analysis features of the IDE Visual Studio Code for eliminating compilation
time errors.

5.2.2 Validation

Validation activities of Coda were both embedded at the end of the Sprints as a form
of testing (Development Testing) and at the end of all sprints to validate the product
together with the customer and product owner according to the requirements and
needs of the users (Release Testing). All project team members were responsible for
validation activities.

18

We did not use any automated testing tools for the testing of Coda since Coda
requires Hand Gestures and a phone camera. We tried to simulate the phone camera
with a pre-recorded video in the emulator however realized it was not possible to do
so. Instead, we tested on the Android phones, but since not all of the team members
owned an Android phone or a VR glass, we assigned one of the pairs during pair
programming to perform the testing for the pair. This method of testing was followed
throughout the whole project.

Following activities were be performed for the validation of Coda,

5.2.2.1 Development Testing

Development testing is where the system will be tested for finding defects by the
development team.

● Unit Testing: Individual units (classes) of the system were manually tested to
check the functionality of objects or methods.

● Integration Testing: Individual units tested during unit testings were
integrated this time to create components to check the component interfaces
and tested manually.

● System Testing: Several or all components are integrated to test the
complete system to check the interactions between components and tested
manually.

5.2.2.2 Release Testing

Complete version of the system was tested before the demo.

● Requirements Testing: We manually tested the system with test cases
specifically designed according to the requirements.

● Scenario Testing: We manually tested the system with test scenarios
specifically designed according to the user stories to check if the main use
cases for the user are performed correctly since we developed with Agile
methodology.

● Performance Testing: Performance is an important feature of Coda since it
has to be real time for useability. So once the system is completely integrated,
the system will be tested for performance and reliability.

5.2.2.3 User Testing

Users test the system in their own environment, the demo.

● Acceptance Testing: This will be done with the supervisor and the juries to
check whether the system is ready to be accepted to be deployed and
demoed to the customers in the CSFair.

19

6 Maintenance Plan and Details

Maintenance Plan of Coda is designed according to 14764–2006 — ISO/IEC/IEEE
International Standard for Software Engineering — Software Life Cycle Processes —
Maintenance [7]. According to this standard, the maintenance plan of Coda will be
analysed in 4 categories.

However since the development team of Coda will no longer reside in the same city,
maintenance will be actively pursued only until CSFair 2020 and after CSFair, the
team will no longer reside in the same city and will work completely remotely and with
different schedules which will be a bottleneck for the maintenance of Coda. So the
team will continue the maintenance of Coda passively and slowly whenever there will
be an idea or a request to do so.

6.1. Corrective Maintenance

After acceptance testing and first deployment if there will be bugs found by the users
and the customers, development team of Coda will make some further
implementations to solve the found bugs. This maintenance will continue iteratively
as newer versions of Coda will be deployed and tested. Hence this is a continuous
maintenance plan since there will be bugs as long as there will be new features and
new versions of Coda.

6.2. Preventive Maintenance

After development testings if there will be defects found by the testers or edge
scenarios that lead to unexpected behavior of the system, the development team of
Coda will make some further implementations to solve the found defects and prevent
them to be found by the users after deployment. This maintenance will continue
iteratively as newer versions of Coda will be tested before deployment since the
focus is to prevent bugs.

6.3. Adaptive Maintenance

Even if all the defects and bugs were found and fixed after the deployments and
during the tests, there will still be a need for maintenance as a result of the changing
environments and libraries used since change is always a part of softwares. There
will surely be updates to the Android OS, to the libraries used like Manomotion,
Google VR and Unity which will require updating the impacted components of Coda
to make it bugless/defectless one again. So, following the updates to the components
and the environments of Coda, the development team will update the impacted parts
of the code as required.

20

https://standards.ieee.org/content/ieee-standards/en/standard/14764-2006.html
https://standards.ieee.org/content/ieee-standards/en/standard/14764-2006.html

6.4. Perfective Maintenance

After deploying the first version of Coda, the team will work on the other promised
features of Coda and start optimizing the implementations in Coda. Since the first
version of Coda was a strictly time-boxed process, perfective maintenance will be
very important for perfecting the product and for delivering what was visioned at the
beginning.

7 Other Project Elements
7.1. Consideration of Various Factors

A table explaining the effects of various factors on the design phase can be found
below as also shown in the Analysis Report.

Table 1: Consideration of Various Factors Table

21

7.2. Ethics and Professional Responsibilities

As engineers, we believe that our first and foremost responsibility is to increase the
availability of products and opportunities of every context for the benefit of the people
while following proper ethical values.

Ethics: First of all, we acknowledged during our analysis phase that Coda is
responsible from respecting the copyright laws for the musical content. We
investigated the extent to which we can use different types of musical data and did
our planning accordingly. In other words, Coda protects the rights of the music
owners and does not use any unauthorized music in the application.

Environmental Responsibilities: In the environmental context, Coda recommends
using recyclable VR glasses like Google Cardboard which are mostly made out of
paper. No additional waste is created by using Coda and Coda is believed to
decrease the amount of waste by eliminating the need for physical instruments and
hence the material that the instruments they are made of, which is mostly plastic.

Economical Responsibilities: As explained in the former parts of this report, Coda
stemmed from the idea of creating a mobile, accessible and cheap way of playing
and learning instruments. For that reason, Coda acknowledges its responsibilities to
aid the society to enhance musical education without seeking any profit. Coda
requires no more than a mobile phone with a camera in order to be functional. For
increasing accessibility in terms of economical constraints, we require no extra
hardware or no advanced hardware. With this approach, we also provide
accessibility to instruments without the cost of purchasing real instruments and the
increase the mobility of instruments by keeping them in virtual level only.

Societal Responsibilities: Coda aims to serve people from all kind of societal and
economical levels. Coda is especially suitable for being used in schools for musical
education. Schools in the countryside in which students do not have the privilege to
purchase real musical instruments, can use our project to provide musical education.
Moreover, everyone with the application will have access to music instruments even
they do not own any. People will able try and choose between the music instruments
to their liking and maybe get further education for it. Hence, playing a music
instrument can be more mainstream and music education can be supported in the
society. Social impacts of arts argued to improve the quality of life and welfare. We
are hoping to shape our community and improve lives through the power of art and
engineering.

22

7.3. Judgements and Impacts to Various Contexts

As engineers, we followed the responsibilities in various contexts we recognized and
employed since the Analysis report during the implementation and project
management of Coda.

Judgement
Description:

Minimizing extra hardware for the development of Coda while providing the best
possible experience.

 Impact
Level

Impact Description

Impact in
Global
Context

Low This version of Coda does not have high impact in Global Context,
however if Coda is extended to work with several users to
remotely make music, it would have a high impact for remote
musicians.

Impact in
Economic
Context

High Coda has a high impact in Economic Context because it reduces
the price of trying & playing an instrument dramatically without the
need for a complex hardware ot mobile phone.

Impact in
Environment
al Context

High Coda has a high impact in Environmental Context because it
reduces the material waste and required hardware of playing an
instrument dramatically.

Impact in
Societal
Context

Medium Coda has a medium impact in Societal Context because it
eliminates the economic constraints of playing and purchasing an
instrument, making it much more accessible for everyone.
Furthermore, since Code requires no physical effort to play an
instrument whereas some instruments do, people with disabilities
or disadvantages may also use Coda.

Table 2: Judgement #1 Table

23

Judgement
Description:

Not requiring a phone with advanced technologies like depth-camera and
using an API that makes cloud computing for exhaustive calculations.

 Impact Level Impact Description

Impact in
Global
Context

Medium Since the judgement made for Coda makes Coda
more accessible, Coda addresses to a wide range of
users worldwide.

Impact in
Economic
Context

High Coda has a high impact in Economic Context because
it reduces the price the mobile phone needed for using
Coda and makes Coda, therefore playing instruments
much more accessible.

Impact in
Environment
al Context

Low This judgement of Coda does not have an
environmental impact.

Impact in
Societal
Context

High Coda has a high impact in Societal Context because it
eliminates the economic constraints of requiring an
advanced mobile phone to run the application on.

Table 3: Judgement #2 Table

7.4. Teamwork and Peer Contribution

Teamwork in Coda was a very successful aspect of the whole project. Following tools
were used to manage the development of project Coda,

● For managing the project plan and ensuring teamwork we organized online
meetings via Zoom at least every week.

● We used Trello boards to keep track of Issues and Tasks to be implemented
as well as tracking the assignees.

● GitHub was used for collaboration and version management on the project.

● Slack was used to communicate asynchronously about the project. & effort
consuming to do so.

The whole team of Coda worked together throughout the project and there weren’t
any members who disrupted the project flow. Even when Corona hit and working on
a project that required hand gestures, Android phones and VR glasses was hard, the
team managed to work together effectively although it was much more challenging
and time.

24

During Corona, it was hard to keep up with the overlapping work and understand
what each member was doing, so we increased the frequency of meetings and
employed an Agile approach for planning each development increment and made
several daily scrum meetings during the day as well as peer programming.

Tasks and their implementers can be found in the Table 4,

Report &
Documentation Work

● All team members participated actively while all the reports
were being written. The team started working in the summer
to come up with the project idea, and the team continued to
worked together to come up with the ideas, requirements
and design needed for this report. Then the work was
distributed evenly to the team members to draw the
diagrams or to document them in the reports. The workload
was unbalanced only when a part of the team would better
work on the implementation than on the reports. This
method was accepted by all the team members and was
often employed.

MediaPipe

● MediaPipe was the first library tried for Hand Tracking.
Cagla and Ege tried the library functionalities on its own to
check the performance of hand tracking.

● Ege, Yağız and Murat worked on MediaPipe only
approximately for 2 whole months because Unity was
chosen as the development platform but MediaPipe was not
yet ported to Unity. This was the a bottleneck task because
there were no other alternatives which performed as well as
MediaPipe. Although this task was quite overwhelming even
for developers of higher levels than us Ege, Yağız and
Murat made an incredible and steel effort to get MediaPipe
working in Unity, solved a lot of problems but we figured
that we still couldn’t foresee how much effort would be
needed to successfully use MediaPipe in Unity. After
contacting numerous field experts, other developers trying
to do the same thing we finally decided to finally switch to a
worse performing library for the sake of implementability.

● Çağla and Merve tried to work on attaching the hand model
to the data expected from MediaPipe however since we
could not manage to port MediaPipe to Unity, this part was
never completed.

Manomotion ● Although Manomotion was one of the libraries reviewed at
the beginning of the implementation, it was initially
cancelled because it required internet connection and it’s
lite version only detected the palm center unlike MediaPipe.

25

Regardless of these constraints, we sent a request to
Manomotion for their Lite SDK which was free. However we
received no answer for 3 months. Then as we decided to
give up on MediaPipe, we contacted employees of
Manomotion to get the Lite SDK, and we finally received the
Lite SDK and developed the final project as well as we
could within the limited time with the limited functionality
offered by Manomotion. All team members worked with
Manomotion. Ege, Yağız and Murat worked on Manomotion
to implement the collision detection and attaching the hand
model to the data obtained.

Instrument Models &
Sounds

● Cagla and Merve worked on the implementation of the
instrument models and managing the sounds in a case of
collision in the application. This part was simple as soon as
the collision was detected by the Manomotion part.

Google VR ● All team members contributed to using Google VR library in
Unity as the AR library. Google VR was simple to use for
simple tasks however since using VR glasses for AR
applications is not a popular idea yet, we spent some time
on figuring out how to display the application in Stereoview.
Also, we realised that rendering the camera as the
background of the application was very memory consuming
for the mobile phone, so Yağız spent a considerable
amount of time to figure out how we could cancel the
camera rendering for the background while still detecting
the hands form the camera.

VR App ● All the team members worked on bringing all the
components together such that it would build a complete VR
application built for Android with Unity.

Vuforia ● For the AR library Yağız and Murat found Vuforia which
successfully implemented interactable AR objects. However
the library had some constraints like using an A4 paper
underneath the AR object to locate the object. However this
constraint made Vuforia useless for Coda because we
wanted to use real life objects.

Table 4: Tasks Table

Proof for the contribution of the team members can be found in the repository we
used for the development of Coda,

https://github.com/ege0zcan/coda

26

https://github.com/ege0zcan/coda

However, it should be noted that we did a lot of peer programming during Coda using
various methods like coding together physically before Corona and coding while
talking on Discord and while coding together on Visual Studio Live Sharing. So the
commit numbers do not represent the exact amount of effort. The team worked on
more than 5 other projects together while working on Coda and we’re proud to say
that we handled all of them without any quarrels and ended up with successful
projects.

7.5. Project Plan Observed and Objectives Met

List of initially designed work packages and the assignees as specified in the
Analysis Report can be found below.

Table 5: Work Packages in the Analysis Report

27

Observed work plan and work packages can be found below along with the
milestones, dates and assignees. As observed when the two tables are compared,
the work packages and work plan changed as a result of the failed usage of
MediaPipe and the time consumed by working on MediaPipe because it had no
alternatives performing as well as it did.

Table 6: Final Work Packages

7.6. New Knowledge Acquired and Learning Strategies Used

7.6.1. Unity

Few of the team members were knowledgeable about Unity and the architecture
used in Unity. For learning Unity, we shared our knowledge while coding and making
the design decisions according to the design and principles of Unity. As the learning
strategies used for learning Unity, we watched Unity tutorials on Youtube and read
the official documentation of Unity. Also, during pair programming we paired the
members with knowledge of Unity with members without the knowledge of Unity to
share the knowledge among the team mates and to make good design decisions.

28

7.6.2. Hand Tracking

For Hand Tracking, we did not have to learn about the inner implementations of the
Computer Vision models used in the Hand Tracking Libraries. However since Hand
Tracking is a technology that is very novel, learning to use the libraries required to
use them in the environments used for the project was challenging enough with the
sparse documentation. Two libraries we had to learn were MediaPipe of Google and
Manomotion Lite SDK.

To learn MediaPipe, we read the the documentation, read the code, the comments in
the code and used the examples written for demonstration purposes by Google. We
also read a lot of issues in the GitHub Issues of Mediapipe. We contacted the
MediaPipe developers, other developers working on MediaPipe with Unity and used
StackOverflow to solve our sub-problems. To learn Manomotion, we used the online
documentation and the discussion forum which were the only source of information
on Manomotion since it is available in a limited environment.

7.6.3. VR

For VR we did not have to learn about the inner implementations of the Virtual Reality
libraries. However since Augmented Reality is a technology that is very novel, it’s not
used with VR glasses which was what we designed initially. Although we used Stack
Overflow to modify the library used for AR, which was Google VR library and the
issues in GitHub issues in the repository of Google VR, we realized that the
performance decreased significantly when we rendered the camera as the
background.

To learn Google VR, we read the the documentation, read the code, the comments in
the code and used the examples written for demonstration purposes by Google. We
also read a lot of issues in the GitHub Issues of Google VR.

8 Conclusion and Future Work

This version of Coda will be deployed as the final version of Coda in the context of
CS491/492. The current system is limited to providing the basic functionalities of the
system which are essential for the mission of Coda. Since this project was a
non-commercial project we made the design decisions accordingly and also made
decisions according to the time constraints. As a result of these constraints, we made
a lot of on-the-fly design and requirement changes to be able to deliver a demoable
product in time.

The current system supports only one of the modes presented in the Analysis
document of Coda, which is the Free Mode with a single instrument being the Drums.
However considering Free Mode was estimated to consume the highest amount of
time, we believe that this version of Coda can be easily extended with additional time

29

and additional resources which a commercial project would have. An example of the
constraints other than the course schedule would being limited to the non-commercial
(free) versions of the SDK’s used during development. Furthermore, the application is
restricted to using a single hand since once again, the Pro SDK of Manomotion is
strictly used by commercial applications and the Lite SDK does not support hand
tracking with two hands. However we believe that these constraints could be easily
overcome with a larger and more experienced team with commercial level resources
and schedule.

As a final remark, we realized that using multiple very novel technologies in an
application increases the risk factors highly and requires the development process to
be very flexible in terms of requirements and schedule. We acknowledged that a
project that requires so many novel technologies would need to wait a little more
such that these technologies would reach a certain maturity level to be able to
integrate them with each other and modify according to our needs by reading the
mature and complete documentation in addition to the existence of sufficient
examples.

If the team of Coda would wish to extend the current version of Coda, it should be
known that the development team of Coda will no longer reside in the same city, so
future work for Coda will be actively pursued only until CSFair 2020 and after CSFair,
the team will work completely remotely and with different schedules which will be a
bottleneck for the future work on Coda. So the team will continue the future work on
Coda passively and slowly whenever there will be an idea or a request to do so.

As final remarks, we believe that this has been a valuable experience for us to try
Agile-Waterfall development in a tight schedule with extensive need for
documentation in addition to the course work. Although the final system has some
constraints as explained above, we are content with the version of Coda that we are
delivering which we believe that it delivers the basic idea of the project. It’s been a
journey for us to learn new technologies, overcome difficulties, experience a real life
like project with different stakeholders and most significantly experience effective
teamwork. We are proud to say that the team of Coda worked effectively throughout
the two semesters, completed more than 5 different projects together and succeeded
in all of them with good teamwork without having any problems in the team.

30

9 Glossary

AR : Augmented Reality. A computer enhanced version of the real-world where
virtual objects can be put on real world objects in an interactive environment.

VR : Virtual Reality. A computer generated world that is completely virtual in terms of
environment and the objects in it which provides a virtual interactive environment to
the user.

MR : Mixed Reality. A computer generated world that is a mix of the real world with
virtual components on top of the virtual world.

CV : Computer Vision. Combining/Using advanced Image Processing, Machine
Learning and Deep Learning techniques to enable computers to see as a human
does.

AAR : Android Archive Library. These may contain Android resources and a manifest
file, which allows you to bundle in shared resources like layouts and drawables in
addition to Java classes and methods [8].

31

10 References
[1] Smith. B, “New study demonstrates link between music and statistical learning,”

The Sydney Morning Herald, 2019. [Online]. Available:

https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-an

d-statistical-learning-20170514-gw4eec.html. [Accessed: Oct. 10, 2019].

[2] ABRSM, ABRSM:. [Online]. Available:

https://es.abrsm.org/en/making-music/4-the-statistics/. [Accessed: Oct. 10, 2019].

[3] Hepsiburada.com. “Vr Google Cardboard Vr 3D Sanal Gerçeklik Gözlüğü Fiyatı,”
2019. [Online]. Available: https://www.hepsiburada.com. [Accessed: Oct. 10, 2019].

[4] Nspe, "Code of Ethics | National Society of Professional Engineers", Nspe.org,
2018.
[Online]. Available: https://www.nspe.org/resources/ethics/code-ethics.[Accessed:
Oct. 11, 2019].

[5] Bilkent CS. Department, “CS491/2 - Senior Design Project I/II,” Bilkent CS.
Department, 2019. [Online]. Available: http://www.cs.bilkent.edu.tr/CS491-2/current/.
[Accessed: Oct. 10, 2019].

[6] Business Insider, “Here's what happens to your body when you've been in virtual
reality for too long,” Business Insider, 2017. [Online]. Available:
https://www.businessinsider.com/virtual-reality-vr-side-effects-2018-3. [Accessed:
Oct. 10, 2019].

[7] IEEE Std 14764-2006 - ISO/IEC/IEEE International Standard for Software
Engineering - Software Life Cycle Processes - Maintenance, 2006.

[8] "Create an Android library | Android Developers", Android Developers, 2020.

[Online]. Available: https://developer.android.com/studio/projects/android-library.

[Accessed: 26- May- 2020].

32

https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-and-statistical-learning-20170514-gw4eec.htm
https://www.smh.com.au/technology/new-study-demonstrates-link-between-music-and-statistical-learning-20170514-gw4eec.htm
https://es.abrsm.org/en/making-music/4-the-statistics/
https://www.hepsiburada.com/
https://www.nspe.org/resources/ethics/code-ethics
http://www.cs.bilkent.edu.tr/CS491-2/current/
https://www.businessinsider.com/virtual-reality-vr-side-effects-2018-3
https://developer.android.com/studio/projects/android-library

